1. The value of the integral ∫0 π /2 [√(cot x)/[ √(cot x) +√(tan x)]]dx is
a. π/4
b. π/2
c. π
d. none of these
(JEE 1983)
Answer: (a)
Solution:
Concept from definite integration to be used:
∫0af(x) = ∫0 af(x-a)
I = ∫0 π /2 [√(cot x)/[ √(cot x) +√(tan x)]]dx ….(i)
= ∫0 π /2 [√(cot(π /2- x))/[ √(cot (π /2 -x)) +√(tan(π /2- x))]]dx
= ∫0 π /2 [√(tan x)/[ √(tan x) +√(cot x)]]dx … (ii)
Adding (i) and (ii)
2I = ∫0 π /2 [[√(cot x) +√(tan x)]/[ √(tan x) +√(cot x)]]dx
2I = ∫0 π /2dx = π /2
I = π /4
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment