1. State true or false
The derivative of an even function is always an odd function (JEE 1983 Sc)
2. For the function f(x) = x/(1+e(1/x), x≠0; and f(x) = 0 if x = o
Find the derivative from the right,
f'(0+)
and the derivative from the left
f'(0-)
(JEE 1983 sc)
3. If f(x) = logx(ln x), then f'(x) at x = e is ______________
(JEE 1985, Sc)
4. The derivative of sec-1{1/(2x²-1)] with respect to √(1-x²) at x = 1/2 is _______________________. (JEE 1986, Sc)
5. If y² = P(x), is a polynomial of degree 3, then
2d/dx of [y³(d²y/dx²)] equals
a. P'''(x)+P'(x)
b. P'(x)P'''(x)
c. P(x)P'''(x)
d. a constant
6. If f(x0 = |x-2| and g(x) = f[f(x)], then g'(x) ________________ for x greater than 20. (JEE 1990, Sc)
7. If y = (sin x)tan x, then dy/dx is equal to
a. (sin x)tan x.( 1 + sec² x. log tan x)
b. tan x.(sin x)tan x - 1.cos x
c. (sin x)tan x.sec² x.log sin x
d. tan x.(sin x)tan x-1
(JEE 1994 Sc)
8. Let F(x) = f(x)g(x)h(x) for all real x, where f(x),g(x),h(x) are differentiable functions. At some points x 0
F'(x0)= 21F(x0)
f'(x0), = 4f(x0),
g'(x0), = -7g(x0),
h'(x0) = kh(x0)
then k = ?
(JEE 1997, SC)
9. the left hand derivative of f(x) [x]sin (πx) at x = k, k an integer is
a. (-1)k (k-1)π
b. (-1)k-1 (k-1)π
c. (-1)kkπ
d. (-1)k-1kπ
10. The domain of the derivative of the function
f(x) = tan -1x if -1x if |x|≤1 and 1/2(|x|-1) if |x| is greater than 1 is
a. R - {-1,1)
b. R - {1}
c. R - {-1}
d. R - {0}
(JEE, 2002, Sc)
Saturday, December 13, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment